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Strategies for the Massive Acceleration of Complex
Fluid-Dynamic Shape Optimizations
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Motivation | The Need for Optimization

= Laws and regulations, as well as tough competition in the market, demand a very high level of performance in
modern engineering design

= Old processes (manual iteration: CAD = Grid generation = Solving = Post-processing) are:
— Time consuming = increases development costs

— Can lead to improved, but not optimized, results = failure to meet targets

= Automation can:
— Shorten development times and reduce design cycles
— Increase knowledge about product’s behavior

— Lead to better and optimized designs
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Motivation | Complex Problems

= Complex models

— Usually, a high number of parameters defines
a parametric model

— Way too much effort to involve all of them in
a conventional optimization process

— Often, the designer selects a small number of
parameters based on experience and
engineering judgment

— This reduces the design space for the
optimization
— The designer might not have enough

experience to make a good selection

— Especially difficult if the model was
created by someone else
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Motivation | Complex Problems

= Complex simulations
— High cell count
— Complex physics

— Many operating points
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Strategies | Surrogate Based Optimization




Surrogate Based Optimization

= Replace CFD computations with a surrogate
model based on a database of previous CFD
results

= Process:

— Run a systematic geometry evaluation and
analyze with CFD

total resistance

— Generate the surrogate model

— Optimize on the surrogate model

— Verify optimization results with CFD and, if

needed, update the surrogate model
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Strategies | Parametric Adjoint Optimization




Adjoint Analysis Results

* |n shape optimization: shape sensitivity (change of
objective function J due to normal displacement of
cells on the design boundary)

0J
on,

= A positive shape sensitivity means that the
boundary should be moved in positive normal
direction

= A negative shape sensitivity calls for boundary
movement in negative normal direction
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How to Use the Adjoint Sensitivities

= Adjoint shape sensitivity values can be used to displace the surface cells directly and to morph the shape, e.g.
in a CAD independent approach

= Downside is that the shape changes cannot easily be fed back into the design workflow, geometry constraints
(e.g. for production) may be violated

-> Solution: map shape sensitivities to CAD model parameters

Sensitivity for CAD Normal displacement of model boundary due to CAD
parameter a; parameter change: ,design velocity”
O - Z A,
L az‘ k -
Adjoint shape Local cell size

sensitivity
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Parametric Adjoints

= Connecting to information about parameter influence on i Pcurcs Sendtvitics [t
shape leads to sensitivities for all design parameters SEneRBIEK) okbon Hile
width_mid -41.2465 3.99853
path_midfactorZ 1338.89 0.0208482
path_startTension 562.805 0.0419241
height_startTension 3119.02 0.242158

path_midfactory 23301 0.0402543

width endTension 115.733

adjoint shape sensitivity product design velocity
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Process Automation

Adjoint flow

solver

}
shape
sensitivities

design velocities

! Y L ]
[ o
y 3
A J
parameter -
| gradients I
values

4
el Optimization engine o sm—"
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Optimization Process
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= Using the gradient information from the adjoint CFD
leads to a much faster convergence of the optimization

12

optimized
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Strategies | Principal Component Analysis




Principal Component Analysis

= Design space dimensionality reduction based on
principal component analysis (Karhunen-Loeve
Expansion, KLE)
— Maps data from an original space of p parameters to a

new space of p parameters (modes or super parameters)
which are uncorrelated over the dataset

Variation of original parameters
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Principal Component Analysis

= Design space dimensionality reduction based on
principal component analysis (Karhunen-Loeve

v

RS assaE SR

Expansion, KLE)

— Maps data from an original space of p parameters to a
new space of p parameters (modes or super parameters)
which are uncorrelated over the dataset

— Back transformation to generate geometry variants when
optimizing in the reduced design space based on linear
interpolation
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Build a parametric model (as usual)
Produce an ensemble of variants (DoE)
— Same topology, different geometry
Determine KLE

Decide if KLE variables shall be used

If no, optimize in CAD space (as usual)

— Generate new variant in CAD space and analyze (and
repeat)

If yes, optimize in KLE space
— Generate new variant in KLE space

— Back-transform from KLE space to CAD space and analyze
(and repeat)

16
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Variability Reached by Super Parameters

Modified Cuboid HVAC RoPAX SWATH | Compressor
sphere duct ferry osVv component
Number of free variables of the .
original CAD model (DoF) ¢ . T 15 &4 0
Etl?ber of Sobol variants used for 100 100 1000** 3000 3000 3000
¥§riabi”ty il b 1] 100.0% | 35.83% | 8384 % | 92.38% | 72% 54.47 %
super parameter
Yorahily reached wih g| - 6928% | 9205% | 98.33% | 86% | 89.59%
1~ and 2° super parameters
Variability reached with the first _ -
three super parameters 3 1000% | 95.76 % | 99.34 % 94 % 94.89 %
;/arlablhty reached with the first 4 _ _ 9744% | 99.76 % 96 % 96.90 %
our super parameters
Variability reached with the first _ _
five super parameters 5 98.51% | 99.93 % 98 % 97.57 %
\1/grlabll|ty reached with the first 10 _ _ 9972 % | 99.99 % 99 % 99.45 %
super parameters
Number of super parameters needed ’ 3 3 5 4 j
to reach more than 95 % variability
Number of super parameters needed 1 3 7 3 7 8
o reach more than 99 % variability
Ratio of number of free variables of
the original CAD model and number 2 1 4.67 5 6.75 7.5
of KLE variables needed to reach [4] [1] [21.8] [56.3] [45.6] [56.3]
95 % variability [squarel

17
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Variability Reached by Super Parameters

Cuboid
Number of free variables of the 3
original CAD model (DoF)
Number of Sobol variants used for 100
KLE
Vs?rlablhty reached with 1 3583 %
17 super parameter
Variability reached with 5 69.28 %

1% and 2* super parameters
Variability reached with the first

three super parameters . bk
Variability reached with the first 4 B
four super parameters Cuboid
Variability reached with the first 5
five super parameters
Variability reached with the first 10
10 super parameters
Number of super parameters needed 3
to reach more than 95 % variability
Number of super parameters needed 3
o reach more than 99 % variability
Ratio of number of free variables of

All CAD variables are completely independent =
- KLE does not give any benefit

the original CAD model and number 1
of KLE variables needed to reach [1]
L95 % variability [square]
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Variability Reached by Super Parameters

Modified
sphere

21\'

Number of free variables of the
original CAD model (DoF)

Number of Sobol variants used for 100
KLE
Vs?rlablhty reached with 11 1000%
17 super parameter
Variability reached with 5
1% and 2* super parameters
Variability reached with the first 3
three super parameters
Variability reached with the first 4
four super parameters
Variability reached with the first 5

five super parameters CAD variables are completely redundant =
Variability reached with the first 10

Mo = KLE diagnoses dependencies

Number of super parameters needed ’
to reach more than 95 % variability
Number of super parameters needed 1
o reach more than 99 % variability

Ratio of number of free variables of
the original CAD model and number 2

of KLE variables needed to reach [4]
L95 % variability [square]

Modified sphere
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Variability Reached by Super Parameters

_______|sDuct | RoPaxvesse

No. of free 14 14
variables
Variability with 3 95% 98%

KLE parameters

FRIENDSHIP SYSTEMS © 2019
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Compressor Test Case

= Geometry: = CFD setup:
— Simplified geometry: — RPM: 37,000
— D_Out: 195mm — Mass flow: 1.35kg/s

No splitter blade

NOB impeller: 11
— NOB diffuser: 19

— 16 free variables for the
description of the main blade

21 FRIENDSHIP SYSTEMS © 2019



Parameter Reduction

KLE Parameter O KLE Parameter 1 KLE Parameter 2
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1st Step | DoE

= Preliminary DoE (Sobol)
— Constraints:
— Pressure differential = 2.1bar
— Convergence

— Objective: efficiency

= Results

— 78% valid designs

~ 3% improvement in efficiency (83.93% = 86.5%)

KLE parameter 0 seems to have the biggest influence on the
objective function

— 65 variants
[x] eval_etaso [x] KLE_modeo [\ KLE_modet [\ KLE_mode2
[ 8 8 & &8 o R €gg288g88 o oo oo o o o
® 9 9 ¢ 0o o gmyYmaS S8888 9 A ., 32882 F 8§ , 82 8
Lot by by bt by by b oo bo ol bl | Lol Levw b berw b b b b b bevw b v b b byn |
[-0.76
0.78 oo ) s )
3 3 2® 4 v e o ¥ o
%I _D-BE % o ﬁsa
g —0.82—: o e @
-0.84 4 ° ) ° °
E] ] ®»e amﬂaﬁ oom © - ba‘“‘a %o e %o ¥
-0.86 3 o’ ’ ° e
[1-0.88 -
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[&] KLE_modeo

[Q KLE_mode0

Correlations of Design Parameters

= How are the dependencies of the original design variables from KLE parameter 0?
= Variation of KLE parameter O:

BB Designs E] ANGLE_HUB E] ANGLE_SHROUD E] MID_SHIFT_DELTA E] MID_SHIFT_POS. E] BETA_HUB_LE

E] BETA_SHROUD_LE E] BETA_HUB_TE

E] BETA_SHROUD_TE E] _TanFactor_HUB_LE E] TanFactor_HUB_TE E] BETA_Tan_HUB_LE

E] BETA_Tan_HUB_TE E] _TAN_SHROUD_LE E]

_TAN_SHROUD_TE E] DELTA_SHROUD_LE E] {DELTA_SHROUD_TE

® There are parameters with strong correlations,
like BETA_HUB_LE and BETA_HUB_TE

= Some parameters are more randomly varied
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2nd Step | Optimization

B Designs @ eval_etaS0 [Q KLE_mode0

= Optimization o alls

& 8 ¢
[P |

L 10

— Starting from best design from preliminary DoE e

— ~ 1% additional improvement (86.5% = 87.25%)

[Q eval_etaS0

E] KLE_mode0

[

@ KLE_model

25 FRIENDSHIP SYSTEMS © 2019




CAESES®

Robust Variable Geometry
for Shape Optimization

By using CAESES®, we could massively bring down our turbine
design cycle from several months to only a few weeks.

Nicolas Lachenmaier,

Mattia Brenner Engineer for Fluid Dynamics and Thermal Analysis

brenner@friendship-systems.com
mitu
www.CAESES.com
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